Multiple positive solutions for a class of Neumann problems
نویسندگان
چکیده
منابع مشابه
INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملinfinitely many solutions for a class of p-biharmonic problems with neumann boundary conditions
the existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous neumann boundary conditions. using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous neumann boundary conditions, we obtain the result.
متن کاملMultiple Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems
We consider the problem " 2 u ? u + f (u) = 0 in u > 0 in ; @u @ = 0 on @; where is a bounded smooth domain in R N , " > 0 is a small parameter and f is a superlinear, subcritical nonlinearity. It is known that this equation possesses boundary spike solutions such that the spike concentrates, as " approaches zero, at a critical point of the mean curvature function H(P); P 2 @. It is also known ...
متن کاملPositive Solutions for a Class of Singular Boundary-value Problems
Using regularization and the sub-super solutions method, this note shows the existence of positive solutions for singular differential equation subject to four-point boundary conditions.
متن کاملPositive Solutions for a Class of Nonresonant Boundary-value Problems
This paper concerns the existence and multiplicity of positive solutions to the nonresonant second-order boundary-value problem Lx = λw(t)f(t, x). We are interested in the operator Lx := −x′′ + ρqx when w is in Lp for 1 ≤ p ≤ +∞. Our arguments are based on fixed point theorems in a cone and Hölder’s inequality. The nonexistence of positive solutions is also studied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2015
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2015.1.48